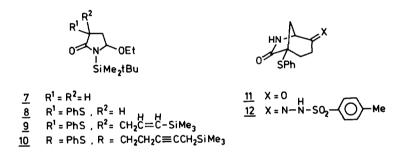
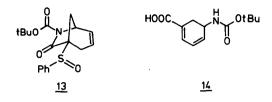

Tetrahedron Letters, Vol.27, No.12, pp 1411-1414, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain ©1986 Pergamon Press Ltd.

REGIOSELECTIVE SYNTHESIS OF (+)-GABACULINE

Henk Hiemstra^{*}, Wim J. Klaver, and W.Nico Speckamp^{*}, Laboratory of Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam. The Netherlands.


Abstract: (+)-Gabaculine has been synthesized via an intramolecular reaction of an N-acyliminium intermediate with a propargyl silane, followed by allene ozonolysis and a Shapiro reaction.

Gabaculine (<u>1</u>) is a natural analogue of GABA (γ -aminobutyric acid), isolated from Streptomyces toyocaensis by Mishima et al¹. As a potent, irreversible inhibitor of the enzyme γ -aminobutyrate aminotransferase (GABA-T), <u>1</u> has aroused considerable interest from pharmacologists² and synthetic chemists^{1,3}. Four syntheses of <u>1</u> have appeared, which all of them utilize an unsaturated cyclohexanecarboxylic acid as starting material, which is then functionalized with a nitrogen substituent^{1,3}. We herewith report a conceptually different approach, which is characterized by the presence of nitrogen already in the starting material, and cyclohexane ring formation via an N-acyliminium ion cyclization.



Our retrosynthetic analysis (Scheme) is based on the use of 5-ethoxy-2-pyrrolidone (2) as dipolar bifunctional reagent⁴. The most direct route to <u>1</u> would then involve cyclization of vinyl silane <u>3</u> to the bicyclic system <u>4</u>, followed by amide hydrolysis and sulfoxide elimination.

Silylation of 2^5 was readily accomplished via reaction with 1.5 eq of tBuMe₂SiCl (CH₂Cl₂, r.t., 17 h) in the presence of 2.5 eq of Et₃N and a catalytic amount of 4-dimethylaminopyridine (DMAP) to give 7^6 in 97% yield⁷. Introduction of the phenylthio group using the procedure of Zoretic⁸ (LDA (2 eq), HMPT (1 eq), PhSSPh (1 eq), THF, -78°C, 3-5 h, 81% yield) was followed by alkylation with (Z)-3-bromo-1-(trimethylsilyl)propene⁹ (LDA, THF, -78°C, 89% yield) to furnish 9^6 . All attempts to effect ring closure of 9 met with failure. Treatment of 9 with a variety of Lewis and Brönsted acids resulted in elimination of ethanol and/or protodesilylation. No trace of the desired azabicyclo[3.2.1]octenone 4 could be detected ^{12,13}.

We then decided to explore a less direct route (Scheme), which is based on the cyclization of a propargyl silane of type 5. Alkylation of 8 with 5-iodo-1-trimethylsilyl-2-pentyme^{4,14} (LDA, THF, -78°C \rightarrow -20°C, 85% yield) afforded 10⁶. Dissolution of 10 in formic acid caused ring closure within a few minutes⁴. Continued stirring for 17 h at ambient temperature resulted in complete removal of the silyl group from nitrogen to give allene 6⁶ (m.p. 158-159°C) in 87% yield. Ozonolysis at -78°C in CH₂Cl₂, followed by reduction with Me₂S produced ketone 11⁶ (m.p. 127-129.5°C) in 86% yield. The Shapiro reaction¹⁵ was deemed suitable to arrive at the desired ring system 4. To this end ketone 11 was first converted into its p-tosylhydrazone 12 (pTsNNH₂, EtOH, 83% yield). Upon treatment with n-butyllithium (4 eq, THF/TMEDA 1:1) 12 was deprotonated into its red trianion, which underwent the desired elimination process during slow warm-up to room temperature (17 h) to give $\frac{4}{6}$ in 78% yield. Thus, the sequence $2 \rightarrow 4$ via the propargyl silane cyclization $5 \rightarrow 6$ constitutes a convenient entry into the 7-azabicyclo[3.2.1]oct-2-ene ring system¹⁶.

To complete the gabaculine synthesis lactam $\underline{4}$ was hydrolyzed by using Grieco's method¹⁷. Attachment of the t-butoxycarbonyl group to nitrogen ((tBu0₂C)₂O, Et₃N, DMAP, 82% yield) followed by oxidation of sulfur (mCPBA, CH₂Cl₂, -78°C, 79% yield) gave sulfoxide <u>13⁶</u>. Compound <u>13</u> was easily hydrolyzed with concomitant sulfoxide elimination (LiOH, H₂O, THF, 50°C) to furnish N-t-butoxycarbonylgabaculine <u>14</u> (m.p. 147-149°C; lit.¹ 148-150°C) in 53% yield after purification with flash chromatography. Since <u>14</u> has been transformed into the natural product by Mishima¹ and Fráter^{3C}, our work constitutes a formal synthesis of racemic gabaculine (<u>1</u>). Convincing evidence for the structure of <u>14</u> was obtained as follows: The ¹H NMR spectrum of <u>14</u> in DCl/D₂O as solvent (which causes loss of the t-butoxycarbonyl protecting group) was virtually identical to the ¹H NMR spectrum, recorded in DCl/D₂O as solvent, of a sample of gabaculine, obtained from Sankyo, Japan.

ACKNOWLEDGEMENT: We thank Dr. H. Kurihara of Sankyo Co., Tokyo, Japan for providing us with a sample of gabaculine. This investigation was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Advancement of Pure Research (ZWO).

REFERENCES AND NOTES

- 1. K. Kobayashi, S. Miyazawa, A. Terahara, H. Mishima, H. Kurihara, <u>Tetrahedron Lett.</u>, 537 (1976).
- a) B.W. Metcalf, <u>Biochem.Pharmacol.</u>, <u>28</u>, 1705 (1979); b) W. Loscher, <u>Naunyn-Schmiedeberg's</u> <u>Arch.Pharmacol.</u> <u>315</u>, 119 (1980).
- a) S.P. Singer, K.B. Sharpless, <u>J.Org.Chem.</u>, <u>43</u>, 1448 (1978): b) B.M. Trost, E. Keinan, <u>ibid.</u>, <u>44</u>, 3451 (1979); c) G. Fráter, U. Müller, U. Schöpfer, <u>Tetrahedron Lett.</u>, <u>25</u>, 281 (1984).
- 4. H. Hiemstra, W.J. Klaver, W.N. Speckamp, <u>J.Org.Chem.</u>, <u>49</u>, 1149 (1984).
- 5. J.C. Hubert, J.B.P.A. Wijnberg, W.N. Speckamp, <u>Tetrahedron</u>, 31, 1437 (1975).

- 6. This compound showed spectra¹⁸ (IR, ¹H NMR, ¹³C NMR) in accord with its structure, and satisfactory elemental analyses and/or high resolution mass spectral data.
- 7. Trimethylsilyl protected lactams were less satisfactory, since these lost the silylgroup during flash chromatography.
- 8. P.A. Zoretic, P. Soja, J.Org.Chem., <u>41</u>, 3587 (1976).
- 9. This compound was prepared in two steps from 3-(trimethylsilyl)-2-propyn-1-ol¹⁰: a) partial hydrogenation using P₂Ni¹¹ as catalyst (86%); b) PBr₃, pyridine, Et₂0, reflux (38%).
- 10. S.E. Denmark, T.K. Jones, J.Org.Chem., 47, 4595 (1982).
- 11. a) C.A. Brown, V.K. Ahuja, <u>J.Chem.Soc.Chem.Commun.</u>, 553 (1973); b) <u>ibid.</u>, <u>J.Org.Chem.</u>, <u>38</u>, 2226 (1973).
- 12. This failure can be ascribed to a combination of unfavourable geometrical factors and limited nucleophilic reactivity of vinyl silanes, compared to allyl and propargyl silanes. Intramolecular reactions between N-acyliminium ions and vinyl silanes in a less constrained system have been reported: L.E. Overman, T.C. Malone, G.P. Meier, <u>J.Am.Chem.Soc.</u>, <u>105</u>, 6993 (1983).
- 13. The corresponding (E)-vinyl silane was equally unwilling to cyclize; details will be given in a full paper. The intramolecular reactivity of (E)- versus (Z)-vinyl silanes toward iminium ions has been investigated: L.E. Overman, R.M. Burk, <u>Tetrahedron Lett.</u>, <u>25</u>, 5739 (1984).
- 14. H. Hiemstra, M.H.A.M. Sno, R.J. Vijn, W.N. Speckamp, J.Org.Chem., <u>50</u>, 4014 (1985).
- 15. a) R.M. Adlington, A.G.M. Barrett, <u>Acc.Chem.Res.</u>, <u>16</u>, 55 (1983); b) R.H. Shapiro, <u>Org.React</u>. (New York), <u>23</u>, 405 (1975).
- For other syntheses of 7-azabicyclo[3.2.1]oct-2-enes see: G.R. Krow, D.A. Shaw, C.S. Jovais,
 H.G. Ramjit, <u>Synth.Commun.</u>, <u>13</u>, 575 (1983), and references therein.
- 17. D.L. Flynn, R.E. Zelle, P.A. Grieco, J.Org.Chem., 48, 2424 (1983).
- 18. Some selected spectral data are:

(Received in UK 28 January 1986)